Asymptotic behaviour of heavy-tailed branching processes in random environments

Xiaoyue Zhang (Beijing Normal University)

(Joint work with Professor Wenming Hong)

The 15th Workshop on Markov Processes and Related Topics

July 11-15, 2019

Overview

- 1 Martingale convergence: Branching processes
 - Kesten-Stigum Theorem
 - Seneta-Heyde theorem
 - $m=\infty$

- 2 Branching processes in random environments
 - Kesten-Stigum type Theorem
 - Seneta-Heyde type Theorem
 - Main results: Heavy-tailed $d(\bar{\xi}, s) = 0$

Overview

- 1 Martingale convergence: Branching processes
 - Kesten-Stigum Theorem
 - Seneta-Heyde theorem
 - $m=\infty$

- 2 Branching processes in random environments
 - Kesten-Stigum type Theorem
 - Seneta-Heyde type Theorem
 - Main results: Heavy-tailed $d(\bar{\xi}, s) = 0$

- $Z_0 = 1$;
- $Z_n := \sum_{k=1}^{Z_{k-1}} \zeta_k$
- ζ_k i.i.d., with $f(s) = \sum_{j=0}^{\infty} p_j s^j$
- $m := EZ_1 = f'(1);$
- $q := P\{Z_n \to 0, n \to \infty\};$
- m > 1(supercritical case): $P(Z_n \to \infty) = 1 q > 0$.
- question: $Z_n \xrightarrow{?} \infty$

- $Z_0 = 1$;
- $Z_n := \sum_{k=1}^{Z_{k-1}} \zeta_k;$
- ζ_k i.i.d., with $f(s) = \sum_{j=0}^{\infty} p_j s^j$;
- $m := EZ_1 = f'(1);$
- $q := P\{Z_n \to 0, n \to \infty\};$
- m > 1(supercritical case): $P(Z_n \to \infty) = 1 q > 0$.
- question: $Z_n \stackrel{?}{\longrightarrow} \infty$

- $Z_0 = 1$;
- $Z_n := \sum_{k=1}^{Z_{k-1}} \zeta_k;$
- ζ_k i.i.d., with $f(s) = \sum_{j=0}^{\infty} p_j s^j$;
- $m := EZ_1 = f'(1);$
- $q := P\{Z_n \to 0, n \to \infty\};$
- m > 1(supercritical case): $P(Z_n \to \infty) = 1 q > 0$.
- question: $Z_n \stackrel{?}{\longrightarrow} \infty$

- $Z_0 = 1$;
- $Z_n := \sum_{k=1}^{Z_{k-1}} \zeta_k;$
- ζ_k i.i.d., with $f(s) = \sum_{j=0}^{\infty} p_j s^j$;
- $m := EZ_1 = f'(1);$
- $q := P\{Z_n \to 0, n \to \infty\};$
- m > 1(supercritical case): $P(Z_n \to \infty) = 1 q > 0$.
- question: $Z_n \stackrel{?}{\longrightarrow} \infty$

- $Z_0 = 1$;
- $Z_n := \sum_{k=1}^{Z_{k-1}} \zeta_k;$
- ζ_k i.i.d., with $f(s) = \sum_{j=0}^{\infty} p_j s^j$;
- $m := EZ_1 = f'(1);$
- $q := P\{Z_n \to 0, n \to \infty\};$
- m > 1(supercritical case): $P(Z_n \to \infty) = 1 q > 0$.
- question: $Z_n \stackrel{?}{\longrightarrow} \infty$

Outline

Kesten-Stigum Theorem

$$W_n := \{\frac{Z_n}{m^n}\}$$
 is a martingale $\Rightarrow W_n : \rightarrow W$ a.s.

Theorem (Kesten-Stigum, 1966)

$$EW = 1 \Leftrightarrow EZ_1 \log Z_1 < \infty.$$

Remark

$$EW = 1 \iff W \text{ is proper, i.e., } P(0 < W < \infty) = 1 - q$$

If only $EZ_1 < \infty$?

Kesten-Stigum Theorem

 $W_n := \{\frac{Z_n}{m^n}\}$ is a martingale $\Rightarrow W_n : \to W$ a.s.

Theorem (Kesten-Stigum, 1966)

$$EW = 1 \Leftrightarrow EZ_1 \log Z_1 < \infty.$$

Remark

$$EW = 1 \iff W \text{ is proper}, i.e., P(0 < W < \infty) = 1 - q.$$

If only $EZ_1 < \infty$?

Kesten-Stigum Theorem

 $W_n := \{\frac{Z_n}{m^n}\}$ is a martingale $\Rightarrow W_n : \to W$ a.s.

Theorem (Kesten-Stigum, 1966)

$$EW = 1 \Leftrightarrow EZ_1 \log Z_1 < \infty.$$

Remark

$$EW = 1 \iff W \text{ is proper}, i.e., P(0 < W < \infty) = 1 - q.$$

If only $EZ_1 < \infty$?

- $f_n(s)$ to denote the probability generating function of Z_n ;
- $k_n(s) = -\log f_n(e^{-s}); s \in (0, -\log q)$
- $h_n(s) = k_n^{-1}(s);$

Theorem (Seneta (69), Heyde (70))

 $X_n(s) := \exp(-Z_n h_n(s))$ is a martingale, $s \in (0, -\log q)$

$$W_n(s) := Z_n h_n(s) \to W(s), a.s.$$

W(s) is proper (i.e., $\mathbb{P}(0 < W(s) < \infty) = 1 - q)$ if $EZ_1 < \infty$.

If $m = EZ_1 = \infty$?

- $f_n(s)$ to denote the probability generating function of Z_n ;
- $k_n(s) = -\log f_n(e^{-s}); s \in (0, -\log q)$
- $h_n(s) = k_n^{-1}(s);$

Theorem (Seneta (69), Heyde (70))

$$X_n(s) := \exp(-Z_n h_n(s))$$
 is a martingale, $s \in (0, -\log q)$

$$W_n(s) := Z_n h_n(s) \to W(s), a.s.$$

$$W(s)$$
 is proper (i.e., $\mathbb{P}(0 < W(s) < \infty) = 1 - q)$ if $EZ_1 < \infty$.

If
$$m = EZ_1 = \infty$$
?

- $f_n(s)$ to denote the probability generating function of Z_n ;
- $k_n(s) = -\log f_n(e^{-s}); s \in (0, -\log q)$
- $h_n(s) = k_n^{-1}(s);$

Theorem (Seneta (69), Heyde (70))

$$X_n(s) := \exp(-Z_n h_n(s))$$
 is a martingale, $s \in (0, -\log q)$

$$W_n(s) := Z_n h_n(s) \to W(s), a.s.$$

$$W(s)$$
 is proper (i.e., $\mathbb{P}(0 < W(s) < \infty) = 1 - q)$ if $EZ_1 < \infty$.

If $m = EZ_1 = \infty$?

- $f_n(s)$ to denote the probability generating function of Z_n ;
- $k_n(s) = -\log f_n(e^{-s}); s \in (0, -\log q)$
- $h_n(s) = k_n^{-1}(s);$

Theorem (Seneta (69), Heyde (70))

 $X_n(s) := \exp(-Z_n h_n(s))$ is a martingale, $s \in (0, -\log q)$

$$W_n(s) := Z_n h_n(s) \to W(s), a.s.$$

$$W(s)$$
 is proper (i.e., $\mathbb{P}(0 < W(s) < \infty) = 1 - q)$ if $EZ_1 < \infty$.

If $m = EZ_1 = \infty$?

- $f_n(s)$ to denote the probability generating function of Z_n ;
- $k_n(s) = -\log f_n(e^{-s}); s \in (0, -\log q)$
- $h_n(s) = k_n^{-1}(s);$

Theorem (Seneta (69), Heyde (70))

$$X_n(s) := \exp(-Z_n h_n(s))$$
 is a martingale, $s \in (0, -\log q)$

$$W_n(s) := Z_n h_n(s) \to W(s), a.s.$$

$$W(s)$$
 is proper (i.e., $\mathbb{P}(0 < W(s) < \infty) = 1 - q)$ if $EZ_1 < \infty$.

If $m = EZ_1 = \infty$??

If $m = EZ_1 = \infty$

- $X_n(s) := \exp(-Z_n h_n(s))$ is a martingale, $s \in (0, -\log q)$;
 - $W_n(s) := Z_n h_n(s) \to W(s), a.s.$

- But W(s) is not proper (i.e., $\mathbb{P}(0 < W(s) < \infty) < 1 q)$;
- Seneta (1969), showed that it is never possible to find $\{c_n\}$ such that $\{\frac{Z_n}{c_n}\}$ converges in distribution to a proper, non-degenerate law.
- Darling (70) and Seneta (73) gave sufficient conditions for the existence of a sequence $\{c_n\}$ such that $\{\frac{\log(Z_n+1)}{c_n}\}$ converges in distribution to a non-degenerate law.

If
$$m = EZ_1 = \infty$$

• $X_n(s) := \exp(-Z_n h_n(s))$ is a martingale, $s \in (0, -\log q)$;

$$W_n(s) := Z_n h_n(s) \to W(s), a.s.$$

- But W(s) is not proper (i.e., $\mathbb{P}(0 < W(s) < \infty) < 1 q)$;
- Seneta (1969), showed that it is never possible to find $\{c_n\}$ such that $\{\frac{Z_n}{c_n}\}$ converges in distribution to a proper, non-degenerate law.
- Darling (70) and Seneta (73) gave sufficient conditions for the existence of a sequence $\{c_n\}$ such that $\{\frac{\log(Z_n+1)}{c_n}\}$ converges in distribution to a non-degenerate law.

If $m = EZ_1 = \infty$

• $X_n(s) := \exp(-Z_n h_n(s))$ is a martingale, $s \in (0, -\log q)$;

$$W_n(s) := Z_n h_n(s) \to W(s), a.s.$$

- But W(s) is not proper (i.e., $\mathbb{P}(0 < W(s) < \infty) < 1 q)$;
- Seneta (1969), showed that it is never possible to find $\{c_n\}$ such that $\{\frac{Z_n}{c_n}\}$ converges in distribution to a proper, non-degenerate law.
- Darling (70) and Seneta (73) gave sufficient conditions for the existence of a sequence $\{c_n\}$ such that $\{\frac{\log(Z_n+1)}{c_n}\}$ converges in distribution to a non-degenerate law.

If $m = EZ_1 = \infty$

• $X_n(s) := \exp(-Z_n h_n(s))$ is a martingale, $s \in (0, -\log q)$;

$$W_n(s) := Z_n h_n(s) \to W(s), a.s.$$

- But W(s) is not proper (i.e., $\mathbb{P}(0 < W(s) < \infty) < 1 q)$;
- Seneta (1969), showed that it is never possible to find $\{c_n\}$ such that $\{\frac{Z_n}{c_n}\}$ converges in distribution to a proper, non-degenerate law.
- Darling (70) and Seneta (73) gave sufficient conditions for the existence of a sequence $\{c_n\}$ such that $\{\frac{\log(Z_n+1)}{c_n}\}$ converges in distribution to a non-degenerate law.

If $m = EZ_1 = \infty$

• $X_n(s) := \exp(-Z_n h_n(s))$ is a martingale, $s \in (0, -\log q)$;

$$W_n(s) := Z_n h_n(s) \to W(s), a.s.$$

- But W(s) is not proper (i.e., $\mathbb{P}(0 < W(s) < \infty) < 1 q)$;
- Seneta (1969), showed that it is never possible to find $\{c_n\}$ such that $\{\frac{Z_n}{c_n}\}$ converges in distribution to a proper, non-degenerate law.
- Darling (70) and Seneta (73) gave sufficient conditions for the existence of a sequence $\{c_n\}$ such that $\{\frac{\log(Z_n+1)}{c_n}\}$ converges in distribution to a non-degenerate law.

If $m = EZ_1 = \infty$, Schuh and Barbour (77),

- classification: regular or irregular, according to the property that whether there exists a sequence of constants $\{c_n\}$ such that $P(0 < \lim_{n \to \infty} \frac{Z_n}{c_n} < \infty) > 0$;
- found necessary and sufficient conditions for the almost sure convergence of $\frac{U(Z_n)}{c_n}$, where U is a slow varying function;

If $m = EZ_1 = \infty$, Schuh and Barbour (77),

- classification: regular or irregular, according to the property that whether there exists a sequence of constants $\{c_n\}$ such that $P(0 < \lim_{n \to \infty} \frac{Z_n}{c_n} < \infty) > 0$;
- found necessary and sufficient conditions for the almost sure convergence of $\frac{U(Z_n)}{c_n}$, where U is a slow varying function;

If $m = EZ_1 = \infty$, Schuh and Barbour (77),

- classification: regular or irregular, according to the property that whether there exists a sequence of constants $\{c_n\}$ such that $P(0 < \lim_{n \to \infty} \frac{Z_n}{c_n} < \infty) > 0$;
- found necessary and sufficient conditions for the almost sure convergence of $\frac{U(Z_n)}{c_n}$, where U is a slow varying function;

Overview

- 1 Martingale convergence: Branching processes
 - Kesten-Stigum Theorem
 - Seneta-Heyde theorem
 - $m=\infty$

- 2 Branching processes in random environments
 - Kesten-Stigum type Theorem
 - Seneta-Heyde type Theorem
 - Main results: Heavy-tailed $d(\bar{\xi}, s) = 0$

Branching processes in random environments

• Environment: $\bar{\xi} = \{\xi_n : n \in \mathbb{Z}\}$ i.i.d.;

•

$$\xi_n = \{\xi_n^{(0)}, \xi_n^{(1)}, \dots\}, \qquad \xi_n^{(i)} \ge 0, \qquad \sum_{i=0}^{\infty} \xi_n^{(i)} = 1.$$

The law of the environment $\bar{\xi}$ is given by η .

- quenched law: $P_{\bar{\xi}}$;
- annealed law: $\mathbb{P}(\cdot) := \int P_{\bar{\xi}}(\cdot) \eta(d\bar{\xi}).$

Some notations:

- $m(\xi_0) = E_{\xi_0}(Z_1) := \sum_{y=0}^{\infty} y \xi_0^{(y)};$
- $k_{\xi_i}(s) = -\log f_{\xi_i}(e^{-s});$ $h_{\xi_i}(s) = -\log f_{\xi_i}^{(-1)}(e^{-s}), 0 < s < \infty;$
- $k_n(\xi, s) := k_{\xi_0}(k_{\xi_1}(\cdots(k_{\xi_{n-1}}(s))\cdots) = -\log f_{\xi_0}(f_{\xi_1}(\cdots(f_{\xi_{n-1}}(e^{-s}))\cdots),$
- $h_n(\bar{\xi}, s) = h_{\xi_{n-1}}(\cdots(h_{\xi_0}(s))\cdots) = -\log f_{\xi_{n-1}}^{(-1)}(\cdots(f_{\xi_0}^{(-1)}(e^{-s}))\cdots);$

BPRE: Kesten-Stigum type Theorem

- Kesten-Stigum type Theorem
- $W_n := \{\frac{Z_n}{\pi_n}\}$ is a martingale.

Theorem (Tanny, 88)

w.p.1,

$$\lim_{n \to \infty} \frac{Z_n}{\pi_n} = W$$

and
$$\mathbb{P}(0 < W < \infty | \bar{\xi}) = 1 - q(\bar{\xi}) \iff \mathbb{E}(Z_1 \log^+ Z_1 / m(\xi_0)) < \infty.$$

If only $\mathbb{E}|\log m(\xi_0)| < \infty$?

BPRE: Kesten-Stigum type Theorem

- Kesten-Stigum type Theorem
- $W_n := \{\frac{Z_n}{\pi_n}\}$ is a martingale.

Theorem (Tanny, 88)

w.p.1,

$$\lim_{n \to \infty} \frac{Z_n}{\pi_n} = W$$

and
$$\mathbb{P}(0 < W < \infty | \bar{\xi}) = 1 - q(\bar{\xi}) \iff \mathbb{E}(Z_1 \log^+ Z_1 / m(\xi_0)) < \infty.$$

If only $\mathbb{E}|\log m(\xi_0)| < \infty$?

• Seneta-Heyde type Theorem

Theorem (Tanny, 78)

$$X_n(\bar{\xi}, s) := \exp(-Z_n h_n(\bar{\xi}, s))$$
 is a martingale, $s \in (0, -\log q)$

$$W_n(\bar{\xi},s) := Z_n h_n(\bar{\xi},s) \to W(\bar{\xi},s), a.s.$$

$$\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow W(\bar{\xi}, s) \text{ is proper}$$

$$(i.e., \mathbb{P}(0 < W < \infty | \bar{\xi}) = 1 - q(\bar{\xi})).$$

Question: when $\mathbb{E}|\log m(\xi_0)| = \infty$?

• Seneta-Heyde type Theorem

Theorem (Tanny, 78)

$$X_n(\bar{\xi}, s) := \exp(-Z_n h_n(\bar{\xi}, s))$$
 is a martingale, $s \in (0, -\log q)$

$$W_n(\bar{\xi},s) := Z_n h_n(\bar{\xi},s) \to W(\bar{\xi},s), a.s.$$

$$\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow W(\bar{\xi}, s) \text{ is proper}$$

$$(i.e., \mathbb{P}(0 < W < \infty | \bar{\xi}) = 1 - q(\bar{\xi})).$$

Question: when $\mathbb{E}|\log m(\xi_0)| = \infty$?

Outline

(Tanny) idea of the proof for $W(\bar{\xi}, s)$ is proper

- Let $W_n(\bar{\xi}, s) = Z_n(\bar{\xi}) h_n(\bar{\xi}, s), \quad X_n(\bar{\xi}, s)^u = e^{-uW_n(\bar{\xi}, s)},$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)}$.
- key step $\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi},s) \leqslant 1 \ w.p.1.$
- Let $\chi(u; \bar{\xi}, s) = E_{\bar{\xi}}(X(\bar{\xi}, s)^u)$, then as $n \to \infty$,

$$\chi(u;\bar{\xi},s) = f_{\xi_0} \left(\chi(ud(\bar{\xi},s);\theta\bar{\xi},s) \right). \tag{1}$$

 $\implies W(\bar{\xi}, s)$ is proper

(Tanny) idea of the proof for $W(\bar{\xi}, s)$ is proper

- Let $W_n(\bar{\xi}, s) = Z_n(\bar{\xi})h_n(\bar{\xi}, s), \quad X_n(\bar{\xi}, s)^u = e^{-uW_n(\bar{\xi}, s)},$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)}$.
- key step $\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1$
- Let $\chi(u; \bar{\xi}, s) = E_{\bar{\xi}}(X(\bar{\xi}, s)^u)$, then as $n \to \infty$,

$$\chi(u;\bar{\xi},s) = f_{\xi_0} \left(\chi(ud(\bar{\xi},s);\theta\bar{\xi},s) \right). \tag{1}$$

 $\implies W(\xi, s)$ is proper

(Tanny) idea of the proof for $W(\bar{\xi}, s)$ is proper

- Let $W_n(\bar{\xi}, s) = Z_n(\bar{\xi})h_n(\bar{\xi}, s), \quad X_n(\bar{\xi}, s)^u = e^{-uW_n(\bar{\xi}, s)},$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)}$.
- key step $\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1.$
- Let $\chi(u; \bar{\xi}, s) = E_{\bar{\xi}}(X(\bar{\xi}, s)^u)$, then as $n \to \infty$,

$$\chi(u;\zeta,s) = f_{\xi_0} \left(\chi(uu(\zeta,s);\sigma\zeta,s) \right). \tag{1}$$

 $\implies W(\xi, s)$ is proper

(Tanny) idea of the proof for $W(\bar{\xi}, s)$ is proper

- Let $W_n(\bar{\xi}, s) = Z_n(\bar{\xi})h_n(\bar{\xi}, s), \quad X_n(\bar{\xi}, s)^u = e^{-uW_n(\bar{\xi}, s)},$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)}$.
- key step $\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1.$
- Let $\chi(u; \bar{\xi}, s) = E_{\bar{\xi}}(X(\bar{\xi}, s)^u)$, then as $n \to \infty$,

$$\chi(u;\bar{\xi},s) = f_{\xi_0}\left(\chi(ud(\bar{\xi},s);\theta\bar{\xi},s)\right). \tag{1}$$

 $\implies W(\bar{\xi}, s)$ is proper

BPRE: Seneta-Heyde type Theorem

(Tanny) idea of the proof for $W(\bar{\xi}, s)$ is proper

- Let $W_n(\bar{\xi}, s) = Z_n(\bar{\xi})h_n(\bar{\xi}, s), \quad X_n(\bar{\xi}, s)^u = e^{-uW_n(\bar{\xi}, s)},$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)}$.
- key step $\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1.$
- Let $\chi(u; \bar{\xi}, s) = E_{\bar{\xi}}(X(\bar{\xi}, s)^u)$, then as $n \to \infty$,

$$\chi(u;\bar{\xi},s) = f_{\xi_0}\left(\chi(ud(\bar{\xi},s);\theta\bar{\xi},s)\right). \tag{1}$$

 $\implies W(\bar{\xi}, s)$ is proper

BPRE:
$$d(\bar{\xi}, s) = 0 \ (\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$$

• Question: If $d(\bar{\xi}, s) = 0$? $(\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$

((Tanny, '78)
$$\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\xi, s) \leqslant 1 \quad w.p.1.$$
)

BPRE:
$$d(\bar{\xi}, s) = 0 \ (\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$$

• Question: If $d(\bar{\xi}, s) = 0$? $(\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$

((Tanny, '78)
$$\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1.$$
)

BPRE:
$$d(\bar{\xi}, s) = 0 \ (\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$$

• Question: If $d(\bar{\xi}, s) = 0$? $(\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$

((Tanny, '78)
$$\mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1.$$
)

BPRE: $d(\bar{\xi}, s) = 0 \ (\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$

- θ is the shift operator, for any $\bar{\xi} = \{\xi_0, \xi_1, \dots\}, \theta \bar{\xi} := \{\xi_1, \xi_2, \dots\};$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)} = \lim_{n \to \infty} \frac{h_{\xi_n}(\cdots (h_{\xi_0}(s))\cdots)}{h_{\xi_n}(\cdots (h_{\xi_1}(s))\cdots)}.$
- Assumption

(A1)
$$\eta(\xi_0^{(0)} = 0) = 1.$$

(A2) $\eta(D) = 1$, where $D = \{ \xi : \text{for any } 0 < s < \infty, \ d(\xi, s) = 0 \}$

- (1) (A1) $\Longrightarrow q(\bar{\xi}) = 0.$
- (2) $(Tanny, 78) \mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\overline{\xi}, s) \leqslant 1 \quad w.p.1.$
- (3) conjecture ? $\mathbb{E}|\log m(\xi_0)| = \infty \iff d(\bar{\xi}, s) = 0$ w.p.1

BPRE: $d(\bar{\xi}, s) = 0 \ (\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$

- θ is the shift operator, for any $\bar{\xi} = \{\xi_0, \xi_1, \dots\}, \theta \bar{\xi} := \{\xi_1, \xi_2, \dots\};$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)} = \lim_{n \to \infty} \frac{h_{\xi_n}(\cdots (h_{\xi_0}(s))\cdots)}{h_{\xi_n}(\cdots (h_{\xi_1}(s))\cdots)}.$
- Assumption

(A1)
$$\eta(\xi_0^{(0)} = 0) = 1.$$

(A2)
$$\eta(D) = 1$$
, where $D = \{\bar{\xi} : \text{for any } 0 < s < \infty, \ d(\bar{\xi}, s) = 0\}.$

- (1) (A1) $\Longrightarrow q(\bar{\xi}) = 0.$
- (2) $(Tanny, 78) \mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1.$
- (3) conjecture ? $\mathbb{E}|\log m(\xi_0)| = \infty \iff d(\bar{\xi}, s) = 0 \quad w.p.$

BPRE:
$$d(\bar{\xi}, s) = 0 \ (\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$$

- θ is the shift operator, for any $\bar{\xi} = \{\xi_0, \xi_1, \dots\}, \ \theta \bar{\xi} := \{\xi_1, \xi_2, \dots\};$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)} = \lim_{n \to \infty} \frac{h_{\xi_n}(\cdots (h_{\xi_0}(s))\cdots)}{h_{\xi_n}(\cdots (h_{\xi_1}(s))\cdots)}.$
- Assumption

(A1)
$$\eta(\xi_0^{(0)} = 0) = 1.$$

(A2)
$$\eta(D) = 1$$
, where $D = \{\bar{\xi} : \text{for any } 0 < s < \infty, \ d(\bar{\xi}, s) = 0\}.$

- (1) (A1) $\Longrightarrow q(\bar{\xi}) = 0.$
- (2) $(Tanny, 78) \mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1.$
- (3) conjecture ? $\mathbb{E}|\log m(\xi_0)| = \infty \iff d(\bar{\xi}, s) = 0$ w.p.1

BPRE: $d(\bar{\xi}, s) = 0 \ (\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$

- θ is the shift operator, for any $\bar{\xi} = \{\xi_0, \xi_1, \dots\}, \theta \bar{\xi} := \{\xi_1, \xi_2, \dots\};$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)} = \lim_{n \to \infty} \frac{h_{\xi_n}(\cdots (h_{\xi_0}(s))\cdots)}{h_{\xi_n}(\cdots (h_{\xi_1}(s))\cdots)}.$
- Assumption

(A1)
$$\eta(\xi_0^{(0)} = 0) = 1.$$

(A2)
$$\eta(D) = 1$$
, where $D = \{\bar{\xi} : \text{for any } 0 < s < \infty, \ d(\bar{\xi}, s) = 0\}.$

- (1) (A1) $\Longrightarrow q(\bar{\xi}) = 0.$
- (2) $(Tanny, 78) \mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1.$
- (3) conjecture ? $\mathbb{E}|\log m(\xi_0)| = \infty \iff d(\bar{\xi}, s) = 0$ w.p.1

BPRE: $d(\bar{\xi}, s) = 0 \ (\Rightarrow \mathbb{E}|\log m(\xi_0)| = \infty)$

- θ is the shift operator, for any $\bar{\xi} = \{\xi_0, \xi_1, \dots\}, \theta \bar{\xi} := \{\xi_1, \xi_2, \dots\};$
- $d(\bar{\xi}, s) := \lim_{n \to \infty} \frac{h_{n+1}(\bar{\xi}, s)}{h_n(\theta \bar{\xi}, s)} = \lim_{n \to \infty} \frac{h_{\xi_n}(\cdots (h_{\xi_0}(s))\cdots)}{h_{\xi_n}(\cdots (h_{\xi_1}(s))\cdots)}.$
- Assumption

(A1)
$$\eta(\xi_0^{(0)} = 0) = 1.$$

(A2)
$$\eta(D) = 1$$
, where $D = \{\bar{\xi} : \text{for any } 0 < s < \infty, \ d(\bar{\xi}, s) = 0\}.$

- (1) (A1) $\Longrightarrow q(\bar{\xi}) = 0.$
- (2) $(Tanny, 78) \mathbb{E}|\log m(\xi_0)| < \infty \Longrightarrow 0 < d(\bar{\xi}, s) \leqslant 1 \quad w.p.1.$
- (3) conjecture ? $\mathbb{E}|\log m(\xi_0)| = \infty \iff d(\bar{\xi}, s) = 0 \quad w.p.1$

1 no proper limit exists

For any
$$s \in (0, \infty)$$
, $W_n(\bar{\xi}, s) := Z_n(\bar{\xi})h_n(\bar{\xi}, s)$

1.1 $h_n(\bar{\xi}, s)$ is not the proper norming sequence

Theorem (Hong & \mathbb{Z} , 2019)

(1)
$$W_n(\bar{\xi}, s) \longrightarrow W(\bar{\xi}, s), \quad \eta\text{-}a.s..$$

(2)
$$\eta(D) > 0 \Longrightarrow P_{\bar{\xi}}(W(\bar{\xi}, s) = \infty) > 0, \ P_{\bar{\xi}}(W(\bar{\xi}, s) = 0) > 0, \ s \in (0, \infty), \ n\text{-}a.s.$$

1.2 any norming sequence $c_n(\bar{\xi})$ are related with some $h_n(\bar{\xi},s)$

Theorem (Hong & Z, 2019)

If $Z_n(\bar{\xi})/c_n(\bar{\xi})$ converges in distribution. Then $c_n(\bar{\xi}) \sim h_n(\bar{\xi}, s)$ for some s > 0.

1 no proper limit exists

For any
$$s \in (0, \infty)$$
, $W_n(\bar{\xi}, s) := Z_n(\bar{\xi})h_n(\bar{\xi}, s)$

1.1 $h_n(\bar{\xi}, s)$ is not the proper norming sequence

Theorem (Hong & \mathbb{Z} , 2019)

(1)
$$W_n(\bar{\xi}, s) \longrightarrow W(\bar{\xi}, s), \quad \eta\text{-}a.s..$$

(2)
$$\eta(D) > 0 \Longrightarrow P_{\bar{\xi}}(W(\bar{\xi}, s) = \infty) > 0, \ P_{\bar{\xi}}(W(\bar{\xi}, s) = 0) > 0, \ s \in (0, \infty), \ \eta\text{-}a.s..$$

1.2 any norming sequence $c_n(\bar{\xi})$ are related with some $h_n(\bar{\xi},s)$

Theorem (Hong & Z, 2019)

If $Z_n(\bar{\xi})/c_n(\bar{\xi})$ converges in distribution. Then $c_n(\bar{\xi}) \sim h_n(\bar{\xi}, s)$ for some s > 0.

1 no proper limit exists

For any $s \in (0, \infty)$, $W_n(\bar{\xi}, s) := Z_n(\bar{\xi})h_n(\bar{\xi}, s)$

1.1 $h_n(\bar{\xi}, s)$ is not the proper norming sequence

Theorem (Hong & \mathbb{Z} , 2019)

- (1) $W_n(\bar{\xi}, s) \longrightarrow W(\bar{\xi}, s), \quad \eta\text{-}a.s..$
- (2) $\eta(D) > 0 \Longrightarrow P_{\bar{\xi}}(W(\bar{\xi}, s) = \infty) > 0, \ P_{\bar{\xi}}(W(\bar{\xi}, s) = 0) > 0, s \in (0, \infty), \ \eta\text{-}a.s..$
- 1.2 any norming sequence $c_n(\bar{\xi})$ are related with some $h_n(\bar{\xi},s)$

Theorem (Hong & Z, 2019)

If $Z_n(\bar{\xi})/c_n(\bar{\xi})$ converges in distribution. Then $c_n(\bar{\xi}) \sim h_n(\bar{\xi}, s)$ for some s > 0.

1.2 any norming sequence $c_n(\bar{\xi})$ are related with some $h_n(\bar{\xi},s)$

Theorem (Hong & Z, 2019)

- (1) Let $c_n(\bar{\xi})$ be a sequence of positive constants, such that $Z_n(\bar{\xi})/c_n(\bar{\xi})$ converges in distribution, and let $F_{\bar{\xi}}$ denote the distribution function of the limit. Then there are four cases:
- (a) $F_{\bar{\xi}}(0) = 1 \Longrightarrow \lim_{n} h_n(\bar{\xi}, s) c_n(\bar{\xi}) = \infty \text{ for all } 0 < s < \infty;$
- (b) $F_{\bar{\xi}}(0) = F_{\bar{\xi}}(\infty) = 0 \Longrightarrow \lim_{n} h_n(\bar{\xi}, s) c_n(\bar{\xi}) = 0 \text{ for all } 0 < s < \infty;$
- $(c) \ 1 > F_{\bar{\xi}}(0) = F_{\bar{\xi}}(\infty) > 0 \Longrightarrow \lim_{n} h_n(\bar{\xi}, t) c_n(\bar{\xi}) = \begin{cases} 0 & \text{if } 0 < t < s_r \\ \infty & \text{if } s_r < t < \infty; \end{cases}$
- (d) $F_{\bar{\xi}}(0) < F_{\bar{\xi}}(\infty) \Longrightarrow \lim_{n} h_n(\bar{\xi}, s_i) c_n(\bar{\xi}) = 1.$

2 Normalization by a sequence of functions

2 Normalization by a sequence of functions

• For $0 \leqslant x < \infty$, let

$$y_n(\bar{\xi}, x) = f_{\xi_0}(\cdots(f_{\xi_{n-1}}(e^{-\frac{1}{x}}))\cdots), (y_n(\bar{\xi}, 0) = f_n(\bar{\xi}, 0)).$$

Theorem (Hong & Z, 2019)

$$y_n(\bar{\xi}, Z_n(\bar{\xi})) \longrightarrow Y(\bar{\xi}), \ a.s.; \ where \ Y \in (0, 1), \ \eta\text{-}a.s..$$

2 Normalization by a sequence of functions

2 Normalization by a sequence of functions

• For $0 \leqslant x < \infty$, let

$$y_n(\bar{\xi}, x) = f_{\xi_0}(\cdots(f_{\xi_{n-1}}(e^{-\frac{1}{x}}))\cdots), (y_n(\bar{\xi}, 0) = f_n(\bar{\xi}, 0)).$$

Theorem (Hong & Z, 2019)

$$y_n(\bar{\xi}, Z_n(\bar{\xi})) \longrightarrow Y(\bar{\xi}), \ a.s.; \ where \ Y \in (0, 1), \ \eta\text{-}a.s..$$

3 Normalization by an increasing slowly varying function

• Let $U(\bar{\xi}): [0, \infty) \to [0, \infty)$ be an increasing slowly varying function with $U(\bar{\xi}, 0) = 0$, $\lim_{x \to \infty} U(\bar{\xi}, x) = \infty$, and $\{c_n(\bar{\xi})\}$ a sequence of positive constants. We assume that $\bar{\xi}$ satisfies for any $s \in (0, \infty)$, $d(\bar{\xi}, s) = 0$.

Theorem (Hong & Z, 2019)

(1) If

$$H(\bar{\xi}, s) := \lim_{n} (U(\bar{\xi}, 1/h_n(\bar{\xi}, s))/c_n(\bar{\xi}))$$
 (2)

exists, then $U(\bar{\xi}, Z_n(\bar{\xi}))/c_n(\bar{\xi}) \longrightarrow H(\bar{\xi}, T(\bar{\xi}))$ almost surely.

3 Normalization by an increasing slowly varying function

• Let $U(\bar{\xi}): [0, \infty) \to [0, \infty)$ be an increasing slowly varying function with $U(\bar{\xi}, 0) = 0$, $\lim_{x \to \infty} U(\bar{\xi}, x) = \infty$, and $\{c_n(\bar{\xi})\}$ a sequence of positive constants. We assume that $\bar{\xi}$ satisfies for any $s \in (0, \infty)$, $d(\bar{\xi}, s) = 0$.

Theorem (Hong & Z, 2019)

(1) If

$$H(\bar{\xi}, s) := \lim_{n} (U(\bar{\xi}, 1/h_n(\bar{\xi}, s))/c_n(\bar{\xi}))$$
 (2)

exists, then $U(\bar{\xi}, Z_n(\bar{\xi}))/c_n(\bar{\xi}) \longrightarrow H(\bar{\xi}, T(\bar{\xi}))$ almost surely.

Normalization by an increasing slowly varying function

Theorem (Hong & Z, 2019, Cont.)

(2) On the other hand, if $\{U(\bar{\xi}, Z_n(\bar{\xi}))/c_n(\bar{\xi})\}\$ converges in distribution to a distribution function $F_{\bar{\xi}}$, and define

$$G(\bar{\xi}, x) = \inf\{y \mid 0 \leqslant y < \infty \text{ and } F_{\bar{\xi}}(y) \geqslant x\}, \quad 0 \leqslant x < \infty.$$
 (3)

Then

$$\lim_{n} (U(\bar{\xi}, 1/h_n(\bar{\xi}, s))/c_n(\bar{\xi})) = G(\bar{\xi}, e^{-s})$$
(4)

Normalization by an increasing slowly varying function

Theorem (Hong & Z, 2019, Cont.)

(2) On the other hand, if $\{U(\bar{\xi}, Z_n(\bar{\xi}))/c_n(\bar{\xi})\}\$ converges in distribution to a distribution function $F_{\bar{\xi}}$, and define

$$G(\bar{\xi}, x) = \inf\{y \mid 0 \leqslant y < \infty \text{ and } F_{\bar{\xi}}(y) \geqslant x\}, \quad 0 \leqslant x < \infty.$$
 (3)

Then

$$\lim_{n} (U(\bar{\xi}, 1/h_n(\bar{\xi}, s))/c_n(\bar{\xi})) = G(\bar{\xi}, e^{-s})$$
(4)

Theorem (Hong & Z, Cont.)

(3) Under the condition of (2) and some other conditions

$$\lim_{n} \frac{c_{n-1}(\theta\xi)}{c_n(\bar{\xi})} = \alpha(\bar{\xi}) > 0 \tag{5}$$

exists, and

$$G(\bar{\xi}, e^{-s})/G(\theta \bar{\xi}, e^{-h_{\xi_0}(s)}) = \alpha(\bar{\xi}) \quad \text{for } s \in (0, \infty).$$
 (6)

Furthermore, the distribution function $F_{\bar{\xi}}$ and $F_{\theta\bar{\xi}}$ satisfy the functional equation

$$F_{\bar{\xi}}(\alpha(\bar{\xi})u) = f_{\xi_0}(F_{\theta\bar{\xi}}(u)), \quad 0 \leqslant u < \infty, \tag{7}$$

Theorem (Hong & Z, Cont.)

(3) Under the condition of (2) and some other conditions

$$\lim_{n} \frac{c_{n-1}(\theta\xi)}{c_n(\bar{\xi})} = \alpha(\bar{\xi}) > 0 \tag{5}$$

exists, and

$$G(\bar{\xi}, e^{-s})/G(\theta \bar{\xi}, e^{-h_{\xi_0}(s)}) = \alpha(\bar{\xi}) \quad \text{for } s \in (0, \infty).$$
 (6)

Furthermore, the distribution function $F_{\bar{\xi}}$ and $F_{\theta\bar{\xi}}$ satisfy the functional equation

$$F_{\bar{\xi}}(\alpha(\bar{\xi})u) = f_{\xi_0}(F_{\theta\bar{\xi}}(u)), \quad 0 \leqslant u < \infty, \tag{7}$$

Thank you for your attention!